Minimizing the Impact of Shading at Oblique Solar Angles in a Fully Enclosed Asymmetric Concentrating PVT Collector
نویسندگان
چکیده
PVT collectors produce both electricity and heat from the same area. PVT collectors with low concentration factor allow both stationary and tracking configurations. For stationary or single axis tracking, the daily variation in the solar incidence angle can cause significant shading in concentrating collectors. Shading has a larger impact on PV than on thermal collectors and thus the evaluations was more focused on the electrical part. Several prototype versions of a novel design for a concentrating asymmetric PVT collector have been tested and compared. One tested improvement was replacing the reflective end gables with transparent end gables. Another improvement was to use different cell sizes. These actions were expected to minimize the impact of the shading at oblique solar incidence angles. The second action was found to be more beneficial than the first. Measurements were also performed in the solar simulator to fully understand the impact of shading in cell strings with 1/6 the size of standard cells. The latest version of the PVT was found to have, at 25oC and 1000w/m, a collector efficiency of 13,7%, a cell area efficiency of 20,3% and an electrical power output of 237W. Lower side of the receiver was producing 58% of the total power. © 2013 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ISES
منابع مشابه
Evaluation of solar-chimney power plants with multiple-angle collectors
Solar chimney power plants are plants based on solar thermal power including three parts of collector, chimney and turbine, which is able to produce electrical energy. One of the effective parameters in increasing the power production is the collector angles versus horizon. In the present study, a numerical analysis of a solar chimney power plant for different angles of the collector (divergent...
متن کاملSignificant factors for enhancing the life cycle assessment of photovoltaic thermal air collector
Due to the rapid industrialization and development across the entire globe, there is the increasing demand for energy. However, the energy sources from fossil fuels are not abundant in every part of the world. India has to import fuel from other parts of the world which consumes a major portion of Government funds. So, currently improving solar energy technologies efficiency is one of the most ...
متن کاملEnergy Simulation of a Holographic PVT Concentrating System for Building Integration Applications
A building integrated holographic concentrating photovoltaic-thermal system has been optically and energetically simulated. The system has been designed to be superimposed into a solar shading louvre; in this way the concentrating unit takes profit of the solar altitude tracking, which the shading blinds already have, to increase system performance. A dynamic energy simulation has been conducte...
متن کاملExperimental Investigation on the Effect of Partially Metal Foam inside the Absorber of Parabolic Trough Solar Collector
In the present work the efficiency of a solar parabolic trough has been investigated experimentality. parabolic trough solar collector constitute a proven source of thermal energy for industrial process heat and power genaration. The impact of using the partially porous media in the absorber on the efficiency of PTC (parabolic trough collector) has been investigated. The porosity of copper foa...
متن کاملAn experimental investigation of performance of a 3-D solar conical collector at different flow rates
The shape of a solar collector is an important factor in solar-to-thermal energy conversion. Conical shape is one of the stationary and symmetric shapes that can be employed as a solar water heater. Flow rate of working fluid on the solar collector has an important effect on the efficiency of the collector. The present study is an experimentally investigated of the performance of the solar coni...
متن کامل